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Cancer surveillance research requires estimates of the prevalence of cancer risk factors and screening for small areas such as counties. Two 
popular data sources are the Behavioral Risk Factor Surveillance System (BRFSS), a telephone survey conducted by state agencies, and the 
National Health Interview Survey (NHIS), an area probability sample survey conducted through face-to-face interviews. Both data sources 
have advantages and disadvantages. The BRFSS is a larger survey and almost every county is included in the survey, but it has lower response 
rates as is typical with telephone surveys and it does not include subjects who live in households with no telephones. On the other hand, the 
NHIS is a smaller survey, with the majority of counties not included; but it includes both telephone and nontelephone households, and has 
higher response rates. A preliminary analysis shows that the distributions of cancer screening and risk factors are different for telephone and 
nontelephone households. Thus, information from the two surveys may be combined to address both nonresponse and noncoverage errors. 
A hierarchical Bayesian approach that combines information from both surveys is used to construct county-level estimates. The proposed 
model incorporates potential noncoverage and nonresponse biases in the BRFSS as well as complex sample design features of both surveys. 
A Markov chain Monte Carlo method is used to simulate draws from the joint posterior distribution of unknown quantities in the model 
that uses design-based direct estimates and county-level covariates. Yearly prevalence estimates at the county level for 49 states, as well 
as for the entire state of Alaska and the District of Columbia, are developed for six outcomes using BRFSS and NHIS data from the years 
1997–2000. The outcomes include smoking and use of common cancer screening procedures. The NHIS/BRFSS combined county-level 
estimates are substantially different from those based on the BRFSS alone. 
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1. INTRODUCTION

1.1 The Need for Small-Area Estimates 

Cancer surveillance research requires estimates of the preva­
lence of various characteristics for small areas. Often the small 
areas are counties or collections of counties defined as health 
service areas. The characteristics of interest include life-style 
variables (e.g., smoking, dietary habits, physical activity, and 
obesity), economic status (e.g., education and income), and 
health care utilization (e.g., insurance use and cancer screen­
ing practices). Small-area estimates are used by researchers in 
trend analysis, in predicting future cases, in risk analysis, and 
in investigating relationships between risk factors and cancer 
outcomes such as incidence, mortality, and survival. Improved 
small-area estimates may yield improved predictions and risk 
estimates. 

Trends in the characteristics of interest have policy implica­
tions at both the national and the small-area levels. For example, 
differential rates of cancer screening use in the United States by 
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age, race, health status, and socioeconomic factors have been 
well documented (Breen, Wagener, Brown, Davis, and Ballard-
Barbash 2001; Swan, Breen, Coates, Rimer, and Lee 2003). 
This recognition has stimulated a greater focus on intervention 
research that targets populations with low utilization rates. Al­
though successful strategies to increase cancer screening among 
underutilizing populations recently have been reported, there 
has been unevenness in the targeting of intervention research, 
resulting in gaps in coverage. These gaps are evident geograph­
ically, which may warrant further investigation of the need to 
tailor intervention research as well (Legler, Breen, Meissner, 
Malec, and Coyne 2002). 

Recently, county-level risk factor prevalence rates have been 
used to predict the number of new cancer cases in the next 
year by state, gender, cancer type, and race–ethnicity (Pickle, 
Feuer, and Edwards 2001). The approach utilized results from 
the National Cancer Institute’s (NCI’s) Surveillance, Epidemi­
ology, and End Result (SEER) program of tumor registry data, 
which currently covers approximately 26% of the U.S. popula­
tion. An ecological regression equation was developed that used 
incidence data from SEER and risk factor estimates to predict 
incidence in non-SEER areas at the county level. Thus, obtain­
ing accurate and precise small-area estimates for cancer risk 
factors is an important problem. 

1.2 The Behavioral Risk Factor Surveillance System and 
the National Health Interview Survey 

A popular data source for obtaining small-area estimates has 
been the Behavioral Risk Factor Surveillance System (BRFSS), 
an ongoing telephone survey of the health behaviors of U.S. 
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adults, established in 1984 by the Centers for Disease Con­
trol and Prevention (CDC). The BRFSS was designed to pro­
vide state-specific estimates of the prevalence of risk behav­
iors. Its strength for small-area estimation is the large sam­
ple taken in each state. In 1997, the state sample sizes ranged 
from 1,505 people in the District of Columbia to 4,923 peo­
ple in Idaho (Iachan et al. 1999). Most of the counties in 
the United States are included in the BRFSS sample as well. 
The total sample size for the United States increased each 
year from 1997 (over 130,000 people) through 2000 (over 
180,000 people). (National sample sizes are available online at 
www.cdc.gov/brfss/technical_infodata/.) With the BRFSS, the 
states have the freedom to implement their own sampling proto­
cols, although some features have been standardized. In 1997, 
29 states (including the District Columbia) used variations of 
the Waksberg-type multistage cluster design (Waksberg 1978), 
whereas 22 states used some type of list-assisted design (e.g., 
Lepkowski 1988). 

Coverage can be a problem for telephone surveys such as the 
BRFSS. The degree of bias in surveys that exclude households 
without telephones is a function of the percentage of house­
holds without telephones, the magnitude of the difference be­
tween owners and nonowners of telephones on the particular 
outcome, and the adjustment technique used, if any. Based on 
the 1990 decennial census, only 5.2% of the occupied house­
holds did not have telephones; however, 12.6% of the occu­
pied homes in Mississippi did not have telephones. Based on 
the 2000 census, the number of households without telephones 
at the county level ranged from .4% and 46.1%. Coverage also 
varies substantially among racial–ethnic groups, and coverage 
is substantially below the national average in households with 
the lowest per capita income. In 1994, for example, an esti­
mate, based on the National Health Interview Survey (NHIS) 
of the CDC’s National Center for Health Statistics (NCHS), 
of nontelephone coverage for Blacks below the poverty level 
was 21.3% (Anderson, Nelson, and Wilson 1998). Thus, for 
outcomes where there is a substantial difference between those 
people below and above the poverty line, telephone survey es­
timates could be seriously biased. 

Another source of bias for list-assisted designs arises due to 
noncoverage of unlisted numbers. Furthermore, for efficiency 
reasons, sometimes blocks of numbers that have fewer than a 
prespecified number of residential lines are excluded from the 
sampling frame. These biases can be substantial, especially if 
the prevalence of risk factors is correlated with having a tele­
phone. Thus, the BRFSS alone may not be ideal for developing 
small-area estimates. 

An alternative data source is the NHIS, a nationally represen­
tative, stratified, multistage, area probability sample of house­
holds that collects information based on face-to-face interviews. 
A new sample design is implemented following each decennial 
census. The 1995–2004 NHIS was designed to produce esti­
mates for the nation, for each of four census regions and within 
regions by areas determined by metropolitan status. The total 
number of households sampled each year in the NHIS is ap­
proximately 40,000. For the outcomes considered in this article, 
data are available for a sample of adults from these households 
(the NHIS “adult sample”), the number of which is roughly the 
same as the number of households. Although the survey sam­
ples from all of the states and the District of Columbia each 

year, it is not designed to produce reliable direct state-level es­
timates for every state (Botman, Moore, Moriarty, and Parsons 
2000). Moreover, only about 25% of the counties in the United 
States are included in the sample, so small-area estimates ob­
tained solely from the NHIS may be unreliable. 

The advantages of the NHIS are that it includes both tele­
phone and nontelephone households, and that it has higher re­
sponse rates than does the BRFSS. For example, the response 
rates for the adult sample in the NHIS, which account for non­
response (both refusals and other types of nonresponse) by 
families within sampled households as well as nonresponse by 
adults sampled from responding families, were 80.4%, 73.9%, 
69.6%, and 72.1% in 1997 through 2000, respectively (National 
Center for Health Statistics 2000a, b, 2002a, b). In contrast, 
the BRFSS state-level (including the District of Columbia and 
Puerto Rico) response rates (calculated via the method sug­
gested by the Council of American Survey Research Organi­
zations) had median values of 62.1% in 1997, 59.1% in 1998, 
55.2% in 1999, and 48.9% in 2000 (Centers for Disease Con­
trol and Prevention 2001). The state-level response rates ranged 
from 41.3% (Hawaii) to 88.9% (Puerto Rico) in 1997, 32.5% 
(Delaware) to 76.7% (Puerto Rico) in 1998, 36.2% (Texas) to 
80.8% (Minnesota) in 1999, and 28.8% (New Jersey) to 71.8% 
(Montana) in 2000. 

1.3 A Project to Combine Information From 
the BRFSS and the NHIS 

Fortunately, several questions are common between the 
BRFSS and the NHIS. Furthermore, the NHIS also asks, “Is 
there at least one telephone INSIDE your home that is cur­
rently working?” Thus, one strategy is to combine information 
from both surveys to obtain small-area estimates that correct 
for both noncoverage due to not having telephones and nonre­
sponse. There are two possible approaches for combining in­
formation. The first approach, discussed in Elliott and Davis 
(2005), uses only publicly available NHIS data, which contain 
no geographic identifiers beyond the four U.S. census regions 
of residence (Northeast, Midwest, South, and West) and seven 
urban–rural categories (ranging from metropolitan statistical 
area greater than 5,000,000 to nonmetropolitan statistical area), 
to calibrate the BRFSS estimates to adjust for nonresponse and 
noncoverage. Because much gain in efficiency might result in 
using the actual county identifiers from the NHIS, a collab­
orative project between NCI, NCHS (and its parent agency, 
CDC), and the University of Michigan was undertaken to de­
velop small-area estimates based on combining information 
from both surveys using data that include county identifiers. 
For successful completion, this project required extensive col­
laboration and cooperation among the institutions involved. 

Prevalence rates for six outcomes, including four cancer risk 
factors and the use of two types of cancer screening, were of 
primary interest for the first phase of this project and they are 
listed in Table 1. The four cancer risk factors are gender-specific 
smoking, current and ever, among those who are at least 18 
years of age, and the two types of cancer screening are mam­
mography during the past 2 years among women who are at 
least 40 years of age and pap smear testing during the past 
3 years among women who are at least 18 years of age. Es­
timates were obtained for these six outcomes for 3,114 small 

www.cdc.gov/brfss/technical_infodata/
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Table 1. Outcomes and County-Level Covariates 

Six outcomes 

Current smoking (men, age ≥ 18)
 
Current smoking (women, age ≥ 18)
 
Ever smoked (men, age ≥ 18)
 
Ever smoked (women, age ≥ 18)
 
Mammogram in the past 2 years (age ≥ 40)
 
Pap smear test in the past 3 years (age ≥ 18)
 

Twenty covariates 

Percent Black in 1996 
Percent Hispanic in 1996 
Percent completed high school among 

persons 25 years and over in 1990 
Percent completed college among 

persons 25 years and over in 1990 
Percent Social Security benefit 

recipients in 1996 
Percent below poverty in 1993 
Per capita reported serious crimes 

in 1995 
Civilian labor force unemployment 

rate in 1996 
Per capita social service 

establishments in 1995 
Per capita wages and salaries adjusted 

for cost of living in 1996 
Per capita property taxes in 1992 
Per capita expenditures and 

obligations in 1997 
Monday–Friday newspaper readership 

rate in 1997 
Population per square mile in 2000 
Buying power index in 2000 
Median effective buying 

income index in 2000 
Per household total retail plus 

eating and drinking sales in 2000 
Percent blue collar workers in 2000 
Two dummy variables for whether the 

county is from a large (population ≥ 
1 million) metropolitan statistical area 
(MSA), a small (population < 1 million) 
MSA, or a non-MSA 

areas to which we refer henceforth as counties: 3,112 counties 
in the 49 states excluding Alaska, the entire state of Alaska, 
and the District of Columbia. The data from both surveys for 
years 1997–2000 were used to obtain annual estimates. For this 
project, 20 county-level covariates, which are also listed in Ta­
ble 1, were assembled from a variety of governmental and com­
mercial sources. The listed covariates are a subset of a larger list 
and were included in the model partly based on their substan­
tive, contextual, and empirical relationships with the six out­
comes. In addition, to account for multiple years of data, ap­
propriate numbers of dummy variables were also included as 
predictors. Thus the estimates derived from the model borrow 
strength across areas as well as time. 

A hierarchical Bayesian approach was developed to ob­
tain model-based estimates derived from three types of di­
rect county-level estimates: (1) NHIS estimates for households 
with telephones, (2) NHIS estimates for households without 
telephones, and (3) BRFSS estimates (telephone). The differ­
ences between (1) and (2) provide information about errors due 
to noncoverage, and the differences between (1) and (3) pro­
vide information about nonresponse bias (although other fac­
tors such as mode and contextual effects might also be present), 
assuming that NHIS estimates are unbiased. Not all three di­
rect estimates are available for every county. Because most 
of the 3,114 counties were included in the BRFSS sample, 
BRFSS estimates are available for most of the counties. In 
contrast, among the roughly 25% of the counties included in 
the NHIS sample, most contained sampled households with 

telephones, whereas about 40% contained sampled households 
without telephones. Thus, NHIS telephone estimates are avail­
able for approximately 25% of U.S. counties, whereas NHIS 
nontelephone estimates are available for about 10% (40% of 
25%) of U.S. counties. 

1.4 Outline of the Article 

The rest of this article is organized into four sections. Section 
2 assesses the potential biases due to noncoverage and nonre­
sponse by examining the distributions of the three types of di­
rect estimates. The distributions of 1990 and 2000 telephone 
coverage rates are also assessed to study the potential impact of 
making estimates solely based on the BRFSS. These investiga­
tions set the stage for the need to combine information from the 
BRFSS and NHIS. Section 3 develops a hierarchical Bayesian 
model to combine information from the two surveys and de­
scribes the algorithm used to derive the combined county-level 
estimates. A Markov chain Monte Carlo method is used to com­
pute the posterior mean and standard deviation of population 
proportions for each year and county. Section 4 provides sum­
maries of the distributions of combined estimates for six out­
comes. More detailed analysis is given for two outcomes: cur­
rent smoking among men and mammography. We also compare 
the combined estimates for these two outcomes to model-based 
estimates based solely on the BRFSS. The latter estimates were 
obtained based on a hierarchical model using just the direct es­
timates from the BRFSS and the same covariates listed in Table 
1. Section 5 concludes with a discussion, including limitations 
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of our modeling and estimation procedures, and directions for 
future research. 

2. COMPARISON OF DIRECT ESTIMATES 

Both the NHIS and BRFSS employ complex survey de­
signs that involve weighting factors to adjust for unequal prob­
abilities of selection, nonresponse, and poststratification. Al­
though streamlined in 1997, the BRFSS designs vary by state. 
In addition, the NHIS uses a multistage selection process. We 
therefore constructed weighted estimates based on the sam­
ple from each county and computed the design-based variance 
using the Taylor linearization approach (Binder 1983) for the 
specific designs in the NHIS and each state in the BRFSS. 
For county j = 1,2, . . . , J and year t = 1,2, . . . ,T , let  pxjt, 
pyjt, and pzjt denote the weighted prevalence estimates based 
on NHIS households with telephones, NHIS households with­
out telephones, and the BRFSS, respectively. As mentioned 
in the preceding section, not all three estimates are available 
for every county and year. Each estimate is design-unbiased, 
and comparing these estimates may provide information about 
the extent of noncoverage and nonresponse bias. Nelson, Pow­
ell, Town, and Kovar (2003) compared NHIS and BRFSS na­
tional estimates for a number of outcomes using data from 
1997 for both surveys. Here we compare the county-level es­
timates. 

We select two outcomes for a detailed investigation, current 
smoking for men aged 18 or older and mammography screen­
ing during the past 2 years for women aged 40 years or older. 
Figure 1 provides the means and standard deviations of the es­
timated county prevalence rates of current smoking among men 
for each year (i.e., means and standard deviations of pxjt, pyjt, 
and pzjt across the J counties for each t). It appears that the 
current-smoking rate for men living in households without tele­
phones is almost twice the rate for those living in households 

with telephones. The distributions for the BRFSS and for the 
NHIS telephone households are only modestly different, with 
the largest apparent difference being for 1997. Thus, noncover­
age bias and, perhaps to a lesser extent, nonresponse bias, may 
be important issues for this outcome. 

Figure 2 gives the same information for mammography 
screening rates for the collapsed years 1997–1998 and 1999– 
2000. The collapsing was necessary because the mammography 
questions were not asked every year in both surveys. It appears 
that the mammography screening rates for the nontelephone 
households are about half the rates for the telephone house­
holds. The screening rates are similar between NHIS telephone 
households and BRFSS households. 

Similar patterns were observed for the remaining four out­
comes, with some showing larger differences between NHIS 
telephone households and BRFSS households. Table 2 gives 
national-level estimates, based on NHIS public-use files, of the 
prevalence rates of the six outcomes for telephone and nontele­
phone households. It is fairly obvious that noncoverage bias 
can be substantial in estimates that solely rely on telephone sur­
veys. 

To study the possible impact of noncoverage bias further, we 
computed the percentiles of the county-level telephone noncov­
erage rates based on the 1990 and 2000 censuses. The results for 
the two censuses are quite different. Based on the 1990 census, 
about 5.2% of the households in the nation did not have tele­
phones, and the county-level rates ranged from .5% to 59.7%. 
Based on the 2000 census, however, the national percentage of 
households with no telephones was about 2.4%, and the county-
level rates ranged from .4% to 46.1%. One might expect that 
the telephone coverage rates would increase between 1990 and 
2000. However, an issue that could have contributed to the 
apparent increase involves the questions in the census about 
telephones in the house. In 1990, the relevant census question 

Figure 1. Means and Standard Deviations of County-Level Direct Estimates of Current-Smoking Rates for Men. 
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Figure 2. Means and Standard Deviations of County-Level Direct Estimates of Mammography Rates. 

was, “Do you have a telephone in this house or apartment?” 
This question was similar to the one asked in the NHIS (1997– 
2000). In the 2000 census, however, the question was, “Is there 
telephone service available in this house, apartment, or mobile 
phone from which you can both make and receive calls?” This 
question was slightly different from those in the 1990 census 
and the 1997–2000 NHIS. The 2000 census question did not 
distinguish between cellular and land-based telephones, and it 
asked about service rather than the existence of a telephone in 
the house. 

Regardless of which telephone rates are taken into consid­
eration, given the range of county-level coverage rates, the ex­
tent of noncoverage bias can be substantial for some areas and 
modest for others. Combining information based on a model 
that reflects both noncoverage and nonresponse bias should im­
prove the accuracy of county-level estimates. Despite the issue 
of question wording, we used 2000 census telephone coverage 
rates to develop combined estimates (as discussed later), be­
cause 2000 is closer in time to the survey years 1997–2000. 

3. MODEL AND INFERENCE 

3.1 Model 

Hierarchical models for small-area estimation have a long 
history, beginning with Fay and Herriot (1979). A Bayesian 
approach for small-area estimation was discussed in Dempster 
and Raghunathan (1985). Advances in computing have resulted 
in the ability to fit realistic, but complex, Bayesian models to 
obtain small-area estimates. See Rao (2003) for a comprehen­
sive review of design-based, empirical Bayes, and Bayesian ap­
proaches. 

We adopt a Bayesian approach, using a hierarchical model 
that involves three stages. In the first stage, we develop an ap­
proximate sampling distribution for the three direct estimates 
(NHIS telephone, NHIS nontelephone, and BRFSS) conditional 
on county-level population parameters. Potential nonresponse 
and noncoverage errors are expressed in terms of differences in 
the expected values of the sampling distributions of the direct 
estimates. Complex sample designs are incorporated by using 

Table 2. National NHIS Estimates (and their standard errors) of Prevalence Rates (in percent) for Six Outcomes for Each Year 
by Household Telephone Status 

Telephone No telephone 

Outcome 1997 1998 1999 2000 1997 1998 1999 2000 

Current smoking 
men 26.5(.5) 25.4(.5) 24.6(.5) 24.9(.5) 51.1(1.5) 49.9(2.0) 53.5(2.1) 49.8(1.9) 
women 21.3(.4) 21.2(.4) 20.8(.4) 20.5(.4) 43.9(1.7) 44.2(1.8) 44.9(2.1) 42.6(1.9) 

Ever smoked 
men 54.1(.5) 53.4(.5) 52.5(.6) 51.0(.5) 64.8(1.7) 63.9(2.5) 64.7(2.4) 65.0(2.3) 
women 40.7(.4) 40.3(.5) 40.3(.5) 39.6(.4) 53.1(2.1) 52.6(2.3) 52.4(2.4) 51.9(2.6) 

Cancer screening 1997–1998 1999–2000 1997–1998 1999–2000 

Pap smear 79.3(.4) 80.8(.3) 74.2(2.1) 74.6(1.6) 
Mammography 67.4(.6) 67.4(.4) 40.9(3.8) 33.4(2.7) 



479 Raghunathan et al.: Rates of Cancer Risk Factors and Screening 

weighted estimates as direct estimates and by using design ef­
fects in computing the sampling variances and covariances. In 
the second stage, we model the between-county variation in the 
population parameters, incorporating county-level covariates. 
Finally, the modeling process concludes with a diffuse proper 
prior distribution for the unknown parameters in the second-
stage model. In developing these models, we have taken a prag­
matic approach by keeping the models relatively simple from 
a computational perspective, given the large number of coun­
ties, potential applications to a large number of outcomes, and 
a desire to develop a framework that could be used routinely to 
produce small-area estimates. Limitations of our approach and 
possible alternatives are discussed in Section 5.2. 

3.1.1 Stage 1: Sampling Distribution. The first task is to 
approximate the sampling distribution of the direct estimates 
given that the sample designs and postsurvey adjustment pro­
cedures differed between the BRFSS and the NHIS as well 
as within the BRFSS across the states and the District of 
Columbia. We incorporate the complex survey design features 
by expressing the sampling variances in terms of the effective 
sample sizes for simple random samples (Kish 1995). Specif­
ically, suppose that nrjt and vrjt are the sample size and esti­
mated design-based variance, respectively, for the direct design-
based estimate prjt (under whatever design was used by the sur­
vey), where r = x, y, z, and x, y, and z denote NHIS telephone, 
NHIS nontelephone, and BRFSS (telephone) households. Sup­
pose that Prjt is the corresponding population proportion. Given 
that the estimated variance based on a simple random sam­
ple would be prjt(1 − prjt)/nrjt, the estimated design effect 
is drjt ≡ vrjt/[prjt(1 − prjt)/nrjt]. Thus, the estimated effective 
sample size is ñrjt ≡ nrjt/drjt. The sampling distribution of prjt 

has the design-based expected value Prjt and an approximate 
design-based sampling variance of Prjt(1 − Prjt)/ñrjt. Thus, de­
sign effects provide a unified framework for dealing with dif­
fering designs and postsurvey adjustments. 

Because the sampling variances depend on the population 
proportions, we use the arcsine-square root transformations of 
the direct estimates as in Efron and Morris (1975) to stabilize 
variances approximately, which allows us to simplify our mod­
eling and computation greatly. Our approximate sampling dis­
tribution for a direct estimate is 

sin−1 √ 
prjt ∼ N

(
sin−1 ,Prjt, (4ñrjt)

−1).

In developing this approximate sampling distribution, we treat 
the design effect as fixed at its estimate. This is similar to the 
customary practice of assuming that the sampling variance is 
known when using many hierarchical models for small-area es­
timation (Fay and Herriott 1979; Datta, Fay, and Ghosh 1991; 
Ghosh, Nangia, and Kim 1996; Rao 1999). 

In the practical implementation, we were unable to estimate 
design effects for some counties due to small sample sizes. In 
these cases, we imputed the average design effect of 1.3 for the 
NHIS and 1.1 for the BRFSS. If ñrjt was less than 1, we reset it 
to 1. 

In developing the joint sampling distribution for the direct 
NHIS estimates for telephone and nontelephone households 
and the direct BRFSS estimate, another issue to be addressed 
was the correlation between direct estimates for telephone 

and nontelephone households in the same county. Because the 
NHIS employs a multistage complex sample design, it is pos­
sible that telephone and nontelephone households may share 
the same primary and secondary sampling units. Although the 
resulting correlation may be small, especially if we condition 
on the county-level population proportions, we computed the 
design-based estimate of the correlation at the national level 
and incorporated it when specifying the joint sampling distrib­
ution of the direct estimates. Obviously, given the independent 
selections across the BRFSS and the NHIS, there will be no 
correlation between BRFSS and NHIS estimates conditional on 
county-level proportions. 

Exploiting the variance stabilizing properties of the arcsine-
square root transformation and accounting for the aforemen­
tioned correlation issues as well, we approximate the joint sam­
pling distribution by a trivariate normal distribution

 xjt 

yjt 

zjt 

 

=
⎛ 

⎝ 
sin−1 √ 

pxjt 

sin−1 √ 
pyjt 

sin−1 √ 
pzjt 

⎞ 

⎠ 

⎡⎛ ⎞ 
θjt 

∼ N3 ⎣⎝ φjt ⎠ , 

(1 + δjt)θjt 

⎡ 0 ⎤⎤ 

4−1 ⎣ 
ñ− 

xjt 
1 ρt(ñxjtñyjt)

−1/2 

ñ− 
yjt 

1 0 ⎦⎦ , (1) 

ñ−1 
zjt 

where θjt = sin−1 ,Pxjt is the arcsine-square root of the popula­
tion proportion for those households equipped with telephones 
in county j at time t, φjt = sin−1 ,Pyjt is for those households 
without telephones, δjt measures the proportionate bias in the 
BRFSS estimate relative to the NHIS estimate, and ρt is the 
correlation between the NHIS sample estimates from telephone 
and nontelephone households, which we fix at a value that is 
preestimated at the national level as mentioned previously. 

The manner in which BRFSS nonresponse bias enters into 
the foregoing model, that is, by a factor of the form 1 + δ 

(with subscripts omitted for brevity) when proportions are on 
the transformed (arcsine-square root) scale, implies a bias of 
roughly the same form when proportions are on the original 
scale. This follows from the fact that, for a given δ and pop­
ulation proportion P within a re asonable range of values, we 
can find δ ∗ such that (1+δ) sin−1 

√
P ≈ sin−1 √ 

(1 + δ ∗ )P. The  
population prevalence rates across all six outcomes are typically 
expected to be between 15% and 85%. In an empirical inves­
tigation of the adequacy of the approximation for |δ| ≤ .2 and 
.1 ≤ P ≤ .9, the two sides of the approximate equality had an R-
squared of about 98.5%. Furthermore, a scatter plot of the NHIS 
direct estimates for telephone households and the BRFSS direct 
estimates showed a linear relationship, which further lends em­
pirical support for this model. Hence, for a given estimate of P 
and δ, we can approximately estimate δ ∗ to assess bias on the 
original scale. 

3.1.2 Stage 2: Between-Area Model. Let ωjt = (θjt, φjt, δjt) 

denote a 3 × 1 vector of county-level population parameters. 
Let Ujt be a p × 1 vector of covariates for county j, including 
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T − 1 dummy variables that correspond to years and the inter­
cept. In the second stage of the model, the county-level popu­
lation parameters ωjt are assumed to follow a trivariate normal 
distribution, 

ωjt ∼ N3(βUjt, Σ),

where β is a 3 × p matrix of regression coefficients and Σ is a 
3 × 3 covariance matrix. However, the parameter space needs 
to be restricted so that all three population proportions lie be­
tween 0 and 1 (see the App.). The conditional and joint dis­
tributions are, therefore, truncated normal distributions. In the 
actual application, the 18 covariates other than the dummy vari­
ables were included in U on the logarithmic scale to reduce the 
impact of skewness and standardized to improve numerical sta­
bility. 

3.1.3 Stage 3: Hyperprior. Finally, we assume a diffuse 
proper prior for β and Σ, with columns of β having indepen­
dent multivariate normal distributions, Np(βo, Σo). In the prac­
tical implementation, we fixed βo = 0 and Σo = 104Ip, where Ip 
is the p × p identity matrix; for Σ, we specified an inverse- 
Wishart distribution with do = 4 degrees of freedom and scale 
matrix Ro, which we fixed at 10−4I3. These prior distributions 
are relatively diffuse, but assure that the posterior distribution 
will be proper. 

3.2 Inference 

The ultimate objective is to obtain prevalence estimates (with 
standard errors) for all counties j = 1,2, . . . , J and times (years) 
t = 1,2, . . . ,T (i.e., T × J small-area estimates). Suppose that 
Mjt denotes the proportion of target subjects living in house­
holds with telephones. Then the inferential quantity of in­
terest is the composite proportion, μjt = Mjt sin2 θjt + (1 −
Mjt) sin2 φjt. We used telephone coverage rates from the 2000 
census as estimates of Mjt. Using 1990 telephone coverage rates 
as estimates alters the inferences only modestly. 

Given the complex nature of the model and the large num­
ber of estimands of interest, a simulation technique is the most 
computationally feasible method of estimation. Estimation via 
simulation is accomplished by drawing values from the pos­
terior distribution of μ = {μjt, j = 1, 2, . . . , J, t = 1, 2, . . . ,  T} 
given the observed data D = {xobs, yobs, zobs; Ujt, j = 1, 2, 
. . . , J, t = 1, 2, . . . ,  T}, where xobs, yobs, and zobs are sets of 
county identifiers for which the respective direct estimates x, y, 
and z are available. The Markov chain Monte Carlo technique 
of Gibbs sampling (Gelfand and Smith 1990; Tierney 1991) 
provides a convenient framework to draw values from the joint 
posterior density of {ωjt, j = 1, 2, . . . , J, t = 1, 2, . . . ,T; β; Σ} 
given D. The procedure involves drawing from the joint pos­
terior distribution of a very large number of parameters, k = 
3(TJ + p) + 6. For example, for the smoking prevalence rates, 
J = 3,114, T = 4, and p = 24 (20 covariates, intercept, and 3 
dummy variables for years), and thus k = 37,446; for the cancer 
screening rates, J = 3,114, T = 2, and p = 22 (20 covariates, in­
tercept, and a dummy variable for years), and thus k = 18,750. 
However, the conditional distributions in the Gibbs sequence 
involve either normal or inverse-Wishart distributions, so that 
creating draws is relatively straightforward. Details of the spe­
cific conditional distributions for this model are given in the 
Appendix. 

For each drawn value of θjt and φjt, a draw of μjt =
Mjt sin2 θjt + (1 − Mjt) sin2 φjt can be computed. The draws of 
μjt can be used to approximate the posterior distributions of the 
estimands of interest. The posterior mean and variance of μjt 
can be computed using all draws in the Gibbs sequence after 
ignoring a sufficiently large initial number of draws. For suffi­
ciently large n, the set of draws that includes every nth draw in 
the Gibbs sequence can be treated as approximately indepen­
dent draws after the convergence criterion has been met. 

4. DESCRIPTIVE ANALYSES OF ESTIMATES

In our application, 10 parallel sequences, each of length 
10,000, were used in Gibbs sampling. The first 5,000 draws 
from each sequence were discarded, and then the next 5,000 
were included in computing posterior means and variances. 
Draws were pooled across the 10 parallel sequences, so that 
a total of 50,000 draws were used to compute each summary. 

The Gelman–Rubin statistic R (Gelman and Rubin 1992) 
was used to assess convergence for each μjt, j = 1, 2,..., J, t = 
1, 2,..., T,aswellas β and Σ. Across the six outcomes, the 
largest value of R was 1.053 for a proportion (μjt) and 1.070 
for a regression parameter (component of β or Σ).

All programs were developed using the GAUSS program­
ming language (Aptech Systems 2003). Computations were 
performed using a Dell Optiplex GX400 computer with a 
1.7 GHz Intel Pentium 4 processor and 1 GB of internal mem­
ory. As examples of computing time, the estimation for current 
smoking among men, for which there are direct estimates for 
four time periods (1997, 1998, 1999, and 2000), took roughly 
25 hours, and the estimation for mammography, for which there 
are direct estimates for two time periods (1997–1998 and 1999– 
2000), took roughly 12 hours. 

Most of our descriptive analyses are based on the poste­
rior means of the county population rates μjt, j = 1,2, . . . , J, 
t = 1,2, . . . ,T . However, because the draws from the posterior 
distribution of μjt are obtainable, more refined analyses are pos­
sible. 

4.1 Analysis of Current-Smoking and Mammography 
Screening Rates 

Figure 3 gives a chloropleth county-level map based on the 
combined NHIS/BRFSS estimates of current-smoking rates for 
men in 2000, with the rates grouped into six categories. Sev­
eral counties in Kentucky, Missouri, Pennsylvania, the Vir­
ginias, and the Carolinas have high estimated prevalence rates 
of smoking among men. Figure 4 gives the corresponding map 
for mammography screening rates based on six categories. The 
screening rates are typically lower in the counties that have 
higher smoking prevalence. 

Such maps would be useful for policy makers and researchers 
to identify counties with high or low smoking or screening 
rates. For example, further understanding of local policies in ar­
eas with low smoking rates or high screening rates may provide 
information about potential intervention strategies. The coun­
ties with high smoking rates or low screening rates may be 
target areas of opportunity for interventions and allocation of 
resources. 

Table 3 gives the descriptive statistics for four smoking rates, 
(current, ever) × (male, female) for each year. Table 4 gives 
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Figure 3. U.S. Map With County-Level Combined NHIS/BRFSS Estimates of Current-Smoking Rates for Men in 2000. 

Figure 4. U.S. Map With County-Level Combined NHIS/BRFSS Estimates of Mammography Screening Rates in 1999–2000. 
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Table 3. Percentiles (unweighted) of the Combined NHIS/BRFSS
Estimated Percentages of Current and Ever Smokers by Gender and

Year in 1997–2000 Across 3,114 Counties

Percentage

Outcome Gender Year 10 25 50 75 90

Current Male 1997 21.3 24.3 27.3 30.2 32.6
smoking 1998 20.2 23.1 26.1 29.0 33.0

1999 18.8 21.6 24.6 27.5 30.0
2000 19.1 22.1 25.1 27.8 30.3

Female 1997 16.6 19.1 21.9 24.7 27.1
1998 16.8 19.4 22.1 25.0 27.5
1999 16.5 18.9 21.7 24.6 26.9
2000 16.2 18.8 21.6 24.5 26.8

Ever Male 1997 54.9 59.4 63.3 66.1 68.7
smoking 1998 54.8 59.0 62.3 65.9 68.4

1999 53.3 58.0 61.6 64.5 67.0
2000 50.9 55.3 59.1 62.2 64.7

Female 1997 31.2 35.4 39.8 44.0 46.9
1998 31.8 35.8 40.3 44.4 47.4
1999 31.8 36.1 40.4 44.5 47.5
2000 31.1 35.4 39.7 43.8 47.0

the same information for the two cancer screening rates. These
tables show that the 10th and 90th percentiles are between 15%
and 85% for all outcomes and all years, which provides support
for the linear approximation discussed in Section 3.1.1.

4.2 Comparison With Estimates Based on BRFSS Alone

Given confidentiality concerns and limitations on data shar-
ing, a comparison of the NHIS/BRFSS combined estimates
with estimates based solely on BRFSS data could be informa-
tive. Area identifiers suitable for county-level estimation are
more widely available for the BRFSS.

We used a hierarchical model similar to the one used in Efron
and Morris (1975) to derive the BRFSS-alone estimate, with

sin−1(
√

pzjt) ∼ N(μjt,1/(4ñzjt))

as the first-stage model and

μjt ∼ N(γ Ujt, σ
2)

as the second-stage model; these models are analogous to
those described in Sections 3.1.1 and 3.1.2 for the combined
NHIS/BRFSS estimates. Using a prior distribution similar to
that in Section 3.1.3, with γ ∼ Np(0,104Ip) and σ 2 following
an inverse chi-squared distribution with 2 degrees of freedom

Table 4. Percentiles (unweighted) of the Combined NHIS/BRFSS
Estimated Percentages of Mammography and Pap Smear Cancer

Screening Rates in 1997–1998 and 1999–2000 Across 3,114 Counties

Year

Screening outcome Percentage 1997–1998 1999–2000

Pap smear 10 73.6 75.0
25 75.8 77.2
50 78.3 79.7
75 81.0 82.3
90 83.8 85.3

Mammography 10 54.1 53.1
25 58.3 57.7
50 62.9 62.1
75 67.5 66.9
90 71.9 71.2

(a)

(b)

Figure 5. Histograms of the Differences in Combined (NHIS/BRFSS)
and BRFSS Alone Estimates for Two Outcomes. (a) Current-smoking
rates for men: 2000. (b) Mammography screening rates: 1999–2000.

and scale parameter 10−4, we obtained draws from the pos-
terior distribution of sin2(μjt) via Gibbs sampling. The poste-
rior means and standard deviations were computed from these
draws for comparison with the combined NHIS/BRFSS esti-
mates. The difference in the point estimates, ̂BRFSS/NHIS −
μ̂ BRFSS, may provide information on the effects of the adjust-
ments for noncoverage and nonresponse biases.

Figure 5 gives two histograms. The first histogram displays
the differences in the estimates of current-smoking rates for
men in 2000 and the second displays the differences in the esti-
mated 1999–2000 mammography screening rates for all coun-
ties. The predominance of positive differences in the first his-
togram indicates that the current-smoking rates may be under-
estimated by using data from the BRFSS alone. Similarly, the
predominance of negative values in the second histogram sug-
gests that mammography screening rates may be overestimated
by using data from the BRFSS alone.

The apparent underestimation of smoking rates and the over-
estimation of mammography rates using the BRFSS alone are
consistent with the finding that, in general, telephone surveys
such as BRFSS contain too few responders with low socioe-
conomic status (Goyder, Warriner, and Miller 2002). Given the
differences in the smoking and mammography rates between
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and scale parameter 10−4, we obtained draws from the pos­
terior distribution of sin2(μjt) via Gibbs sampling. The poste­
rior means and standard deviations were computed from these 
draws for comparison with the combined NHIS/BRFSS esti­
mates. The difference in the point estimates, μ BRFSS/NHIS −
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Figure 5 gives two histograms. The first histogram displays 
the differences in the estimates of current-smoking rates for 
men in 2000 and the second displays the differences in the esti­
mated 1999–2000 mammography screening rates for all coun­
ties. The predominance of positive differences in the first his­
togram indicates that the current-smoking rates may be under­
estimated by using data from the BRFSS alone. Similarly, the 
predominance of negative values in the second histogram sug­
gests that mammography screening rates may be overestimated 
by using data from the BRFSS alone. 

The apparent underestimation of smoking rates and the over­
estimation of mammography rates using the BRFSS alone are 
consistent with the finding that, in general, telephone surveys 
such as BRFSS contain too few responders with low socioe­
conomic status (Goyder, Warriner, and Miller 2002). Given the 
differences in the smoking and mammography rates between 
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telephone and nontelephone households, and the variation in 
the county-level telephone coverage rates (and their correlation 
with socioeconomic factors), the combined estimation proce­
dure attempts to provide compromise estimates. 

5. DISCUSSION

County-level estimates of the prevalence rates of cancer risk 
factors and screening are needed by cancer surveillance re­
searchers as well as policy makers. Information from two pop­
ular surveys, both with advantages and disadvantages, has been 
combined to obtain county-level estimates for six outcomes. 
This project represents a collaborative effort of the National 
Cancer Institute, the National Center for Health Statistics (and 
its parent organization, the Centers for Disease Control and Pre­
vention), and the University of Michigan. The empirical investi­
gations have suggested that the combined estimation procedure 
helps to address noncoverage and nonresponse issues. It is pos­
sible to use this strategy to estimate prevalence rates of other 
factors such as obesity, dietary habits, and other cancer-related 
outcomes. The same methodology can be applied in other con­
texts as well, where there are multiple sources of data. 

5.1 A Simulation Study 

Our approach was evaluated using a simulation study as de­
scribed in Xie (2004). The objective of the simulation study 
was twofold: first, to check whether the computer code used to 
generate the estimates in the application was correct; second, 
to check whether the Bayes estimates had desirable repeated-
sampling properties. Using the parameter estimates from the 
analysis of current smoking for men, we generated 500 sets of 
pseudo-data from the NHIS and the BRFSS for 184 counties 
in Massachusetts, Michigan, and Minnesota. The first princi­
pal component based on 18 county-level covariates from the 
application (excluding two that were added near the end of 
the project) was used as a single covariate in the simulation, 
and only one year of data was generated. Thus, the simulated 
datasets may be viewed as simpler versions of the actual data 
used in the application. This simplification was necessary to 
complete the simulation study in a reasonable amount of time. 

For each simulated dataset, we obtained two sets of hierar­
chical Bayes estimates: one based on combined information 
from the NHIS and BRFSS datasets, and the other based on 
only the BRFSS dataset. The combined estimates were practi­
cally unbiased and had good coverage properties, whereas the 
BRFSS-alone estimates were more biased and had worse cov­
erage properties. 

5.2 Limitations of Our Modeling and 
Estimation Procedures 

5.2.1 Use of the Arcsine-Square Root Transformation. As 
was discussed in Section 3.1.1, we applied the arcsine-square 
root transformation to the outcomes in our model, and we ex­
ploited the variance stabilizing properties of this transformation 
to simplify our modeling and computation. Because the deriva­
tion of the arcsine-square root transformation for variance sta­
bilization is rooted in large-sample theory, our model might be 
somewhat deficient, especially for counties with small sample 
sizes. 

To investigate this issue in a simpler situation that does not 
involve combining information from two surveys, we compared 
the BRFSS-alone estimates of Section 4.2, which also incor­
porated the arcsine-square root transformation, with estimates 
obtained for a logistic/normal random effects model fitted to 
the BRFSS data using SAS PROC NLMIXED (SAS Institute 
2000), for current smoking among men. (The latter approach 
cannot be applied to our problem of producing combined es­
timates in a straightforward manner.) The two procedures pro­
duced similar results, but the BRFSS-alone estimates that in­
corporated the arcsine-square root transformation tended to 
be smaller for counties with low smoking rates and/or small 
sample sizes. Although we do not know which estimates are 
preferable (because the truth is unavailable), the findings sug­
gest some possible deficiencies in using the arcsine-square root 
transformation for small-sample situations. 

Anscombe (1948), Freeman and Tukey (1950), and Mosteller 
and Youtz (1961) proposed alternative transformations for 
small-sample situations. We experimented with these transfor­
mations for our application. Although use of the alternative 
transformations appeared to change the estimates somewhat, 
particularly for counties with small sample sizes, the conver­
gence properties of the Gibbs sampling algorithm were sub­
stantially worse than when the usual arcsine-square root trans­
formation was used. 

Alternatives that would not rely on the arcsine-square root 
transformation or normality of the sampling distribution of the 
direct estimates are possible. For example, generalized linear 
models with binomial or Poisson errors, as suggested in Ghosh, 
Natarajan, Stroud, and Carlin (1998) and Farrell (2000), could 
be used but would complicate the modeling (e.g., in incorporat­
ing complex design features) and computational tasks greatly. 
For example, use of the logistic-normal model would require 
rejection sampling techniques such as the Metropolis–Hastings 
algorithm within the Gibbs sampler for over 37,000 parameters, 
and the resulting increased computing time needed would likely 
render the estimation procedure infeasible. An additional com­
plication with this approach would be difficulties in incorporat­
ing correlations between the NHIS telephone and nontelephone 
estimates (but see also Sec. 5.2.2). 

Hopefully, further research as well as increased computer 
power may enable us to avoid making simplifying assumptions. 
For the current project, however, we chose to incorporate such 
simplifying assumptions so that results could be feasibly ob­
tained. 

5.2.2 Preestimation of Correlations and Design Effects. 
As was also discussed in Section 3.1.1, we chose to estimate 
the design effects drjt for the county-level prevalence rates and 
the correlations ρt between the NHIS telephone and nontele­
phone estimates, and then treat them as fixed inputs into our 
Bayesian procedure. Although this is similar in spirit to treating 
sampling variances as fixed at estimates, which is common in 
small-area estimation (Fay and Herriott 1979; Datta et al. 1991; 
Ghosh et al. 1996; Rao 1999), it could result in underestimation 
of variability in the Bayesian procedure. 

Comments similar to those in Section 5.2.1 could be made 
about alternatives to our simple preestimation procedures. For 
example, modeling the design effects as random would again 
require modeling the sampling variances as functions of the 
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means, necessitating the use of a computational procedure such 
as the Metropolis–Hastings algorithm within the Gibbs sampler 
and increasing computing time substantially. 

With regard to the correlations ρt, a possible alternative, al­
beit stronger, assumption would be to assume independence be­
tween the NHIS telephone and nontelephone estimates. The 
preestimated values of ρt in our project were all quite close 
to zero, so an assumption of independence might be reason­
able. Such an assumption would simplify modeling, either in 
the context of our approach or with an approach that incorpo­
rates a generalized linear model (see Sec. 5.2.1), although the 
latter type of approach would still be much more computation­
ally intensive. 

5.2.3 Spatial Effects. In a problem such as ours that in­
volves geographical units such as counties, it is natural to 
ask whether spatial modeling might improve the estimation 
for small areas. The model that we have used already incor­
porates correlations between parameters within counties (see 
Sec. 3.1.2), and more than a dozen county-level covariates have 
been included in our model to account for correlations between 
counties. 

A spatial component could be added to the between-area 
model in Section 3.1.2 to account for omitted covariates. Rao 
(2003, sec. 9.5) provided an excellent summary of applications 
of such methods to small-area estimation, the most successful 
of which have been to modeling population (mortality) data as 
opposed to sample survey data. Future research will explore the 
incorporation of a spatial component in our context. 

5.3 Possible Extensions 

In the present article we considered only two data sources. 
The framework can be extended when three or more sources 
are available. Our approach can also be used to compute es­
timates for subdomains such as subpopulations based on re­
gion, age, race, gender, education, poverty, etc. These estimates 
may be obtained using publicly available BRFSS and NHIS 
data if county identifiers are not needed for subdomain estima­
tion. 

The modeled nonresponse biases in the BRFSS estimates 
(i.e., the δ’s) did not explicitly involve county-level response 
rates. A sensible modification of the model would be to incor­
porate the county-level response rates explicitly, given the no­
tion that the nonresponse bias in BRFSS estimates is smaller for 
counties with high response rates and larger for counties with 
low response rates. The county-level response rates were not 
available for this project. Currently, information on these rates 
is being collected and a modified model that explicitly incorpo­
rates the estimated rates is under investigation. 

We also assumed that the residual covariance matrix Σ in 
the second-stage model is the same for all of the areas. It is 
con­ ceivable that there may be more variation in the smaller 
coun­ ties than in the larger counties. Thus, the residual 
covariance matrix may depend on the population size of the 
county. A sim­ ple fix to this problem would be to stratify 
based on the sizes of the counties. A preliminary investigation 
suggests that this would lead to practically similar results. An 
alternative would be to model the residual covariance matrix 
explicitly as a func­ tion of covariates. Such modifications 
would make the mod­

eling and computational tasks quite complex, and they may 
not be practical when several thousand county estimates of a 
large number of outcomes are needed on a production sched­
ule. 

Finally, the county-level estimates were obtained separately 
for each outcome. Another possibility would be to treat this 
as a multivariate problem, because one would expect these 
outcomes to be correlated with each other. Again, the com­
plexity in the modeling and computational tasks may out­
weigh any benefits derived from any of the modifications sug­
gested. 

APPENDIX: CONDITIONAL DISTRIBUTIONS
 
FOR GIBBS SAMPLING
 

The Markov chain Monte Carlo method used to develop county-
level estimates in this article was based on Gibbs sampling using the 
following conditional distributions. For brevity, we omit all of the sub­
scripts for θ,φ, and  δ. All of the sums are over J counties. We also let 

a = ñx 
−1/4, b = ñx

−1/2 −1/2 ny ˜ /4, c = ñy 
−1/4, and d = ñz 

−1/4.

A.1 Conditional Distribution of β 

Here β is a 3 × p matrix of regression coefficients. Let β f =
( 
L

j
L 

t ωjtUT
jt )( 

L 
j UjtUjt

T )−1 be the least squares estimate. Denoting

Σβ = Σ ⊗ ( 
L  

j UjtUT
jt )

−1 and Σ∗
o = Σo ⊗ I3, it is straightforward to

show that 

vec(β)|θ,  φ,  δ,Σ, data 

∼ N

A2θ2.

(
(�−1 

β + �o
∗−1 )−1�−1 

β vec( βf ), (�−
β 

1 + �o
∗−1 −) 1)

,

where vec denotes a vector created from the columns of a matrix. 
When Σo = aoIp, the preceding multivariate normal distribution sim­
plifies to 

N
(
ao(aoI3p + �β )−1 vec( β f),ao(aoI3p + �β )−1Σβ

)
.

A.2 Conditional Distribution of Σ 

t(ωjt − βUjt)(ωjt − βUjt)
T /JT . It is easy to show

that 
Let S = L L

j

Σ|ω, β, data ∼ inverse-Wishart(JT + do, Ro + JTS). 

A.3 Conditional Distribution of (θ , φ)T

= z(1 + δ)−1. Then we have
(

Let z ∗

(x + z ∗ )/2 
) 

y 
  θ,φ, δ 

∼ N

 (
. (A.1)

φ ρb/2 c 
θ

) ( 
(a + d(1 + δ)−2)/4 ρb/2

) 
,

It is straightforward to derive 
( ) 

θ   δ,β,�, x, z, y
φ 

as bivariate normal using the standard multivariate normal theory (An­
derson 1984) and the following lemma from Lindley and Smith (1972): 

Lemma. If y|θ1 ∼ N(A1θ1,C1) and θ1|θ2 ∼ N(A2θ2,C2), then
− −1θ1|θ2, y ∼ N(Bb,B), where  B = A1 

T C1 
−1A1 + C2 

1 and b = A1 
T C1 y + 

C2 
−1

While constructing the conditional distribution, one needs to keep 
track of the pattern of missing data in the direct estimates. 



Raghunathan et al.: Rates of Cancer Risk Factors and Screening 485

(a) When only x is missing, (A.1) is replaced by
(

z∗
y

)∣∣∣θ,φ, δ ∼ N

[(
θ

φ

)
,

(
d(1 + δ)−2 0

0 c

)]
, (A.2)

and the other expressions are the same.
(b) When only y is missing, θ and φ can be drawn independently.

The conditional distribution of θ can be derived from

(x + z∗)|θ,φ, δ, ρ ∼ N(2θ,a + d(1 + δ)−2)

and θ |φ, δ,β,�. The conditional distribution of φ is simply φ|θ, δ,

β,�.
(c) When only z is missing, (A.1) is replaced by

(
x
y

)∣∣∣θ,φδ ∼ N

[(
θ

φ

)
,

(
a ρb
ρb c

)]
.

(d) When both x and y are missing, θ and φ can be drawn indepen-
dently. The conditional distribution of θ can be derived from

z∗|θ,φ, δ, ρ ∼ N(θ,d(1 + δ)−2)

and

θ |φ, δ,β,�.

The conditional distribution of φ is simply the conditional distribution
derived from the second stage model: φ|θ, δ,β,�.

(e) When both y and z are missing, θ and φ can be drawn in-
dependently. The conditional distribution of θ can be derived from
x|θ,φ, δ, ρ ∼ N(θ,a) and θ |φ, δ,β,�. The conditional distribution of
φ is simply φ|θ, δ,β,�.

(f) When both x and z are missing, θ and φ can be drawn in-
dependently. The conditional distribution of φ can be derived from
y|θ,φ, δ ∼ N(φ, c) and φ|θ, δ,β,�. The conditional distribution of θ

is appropriately conditional normal, θ |φ, δ,β,�.
(g) When x, y, and z are all missing, we simply draw θ and φ from

(
θ

φ

)∣∣∣δ,β,�.

A.4 Conditional Distribution of δ

It is straightforward to see that the conditional distribution can be
obtained from

(z/d − 1)|θ,φ, δ, ρ ∼ N(δ,dθ−2)

and δ|θ,φ,β,�. When z is missing, and no matter whether x or y is
missing, we simply draw δ from δ|θ,φ,β,�. To keep all the draws
of proportions within the range [0, 1], the range of plausible values of
θ,φ, and δ, are [0,π/2], [0,π/2], and [−1,π/(2θ) − 1], respectively.
Thus, the draws from all the univariate normal distributions incorpo-
rated these restrictions.

The estimand of interest is μ, which is defined as M sin2(θ) + (1 −
M) sin2(φ), where M is the proportion of telephone-equipped house-
holds in a given area.

[Received January 2004. Revised October 2005.]
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(a) When only x is missing, (A.1) is replaced by 
(

z ∗ 
y 

) 2 0 
θ,φ, δ ∼ N

 (
θ 

φ 0 c 

) (
,	

d(1 + δ)− )
, (A.2)

and the other expressions are the same. 
(b) When only y is missing, θ and φ can be drawn independently. 

The conditional distribution of θ can be derived from 

(x + z ∗	)|θ,φ, δ, ρ ∼ N(2θ,a + d(1 + δ)−2)

and θ |φ, δ,β,�. The conditional distribution of φ is simply φ|θ, δ,

β,�. 
(c) When only z is missing, (A.1) is replaced by 

(
x 
y 

) 
a ρb 

θ,φδ ∼ N ,

(
θ 

φ ρb c 

) ( )
.

(d) When both x and y are missing, θ and φ can be drawn indepen­
dently. The conditional distribution of θ can be derived from 

z ∗|θ,φ, δ, ρ ∼ N(θ,d(1 + δ)−2)

and 

θ |φ, δ,β,�.

The conditional distribution of φ is simply the conditional distribution 
derived from the second stage model: φ|θ, δ,β,�. 

(e) When both y and z are missing, θ and φ can be drawn in­
dependently. The conditional distribution of θ can be derived from 
x|θ,φ, δ, ρ ∼ N(θ,a) and θ |φ, δ,β,�. The conditional distribution of 
φ is simply φ|θ, δ,β,�. 

(f) When both x and z are missing, θ and φ can be drawn in­
dependently. The conditional distribution of φ can be derived from 
y|θ,φ, δ ∼ N(φ, c) and φ|θ, δ,β,�. The conditional distribution of θ
is appropriately conditional normal, θ |φ, δ,β,�. 

(g) When x, y, and  z are all missing, we simply draw θ and φ from 
(

θ 
)

δ,β,�.
φ 

A.4 Conditional Distribution of δ

It is straightforward to see that the conditional distribution can be 
obtained from 

(z/d − 1)|θ,φ, δ, ρ ∼ N(δ,dθ−2) 

and δ|θ,φ,β,�. When  z is missing, and no matter whether x or y is 
missing, we simply draw δ from δ|θ,φ,β,�. To keep all the draws 
of proportions within the range [0, 1], the range of plausible values of 
θ,φ, and  δ, are  [0,π/2], [0,π/2], and  [−1,π/(2θ) − 1], respectively. 
Thus, the draws from all the univariate normal distributions incorpo­
rated these restrictions. 

The estimand of interest is μ, which is defined as M sin2(θ) + (1 −
M) sin2(φ), where  M is the proportion of telephone-equipped house­
holds in a given area. 

[Received January 2004. Revised October 2005.] 
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